

T.R. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT

Form No: FRM-1

First Pub Date: 15.11.2016

Revision Date: 15.02.2017

DESIGN PROJECT PROPOSAL FORM

Academic Year	2022 -2023	Semester	Fall \square	Spring ■
	Research Application			
Project Type	☐ ME 411 Thermal & Fluid Design ☐ ME 412 Thermal & Fluid Design			
	☐ ME 413 Mechanical Design ☐ ME 414 Mechanical Design			
	☐ ME 415 Robotics & Control Design ☐ ME 416 Robotics & Control Design			
Advisor	Assoc.Prof.Dr.Sercan Acarer			
Project Title	Detailed Thermodynamic Modeling and Turbocharger Design of Automobile Engines (Gasoline and Diesel) and Investigate the Effects of Ambient Conditions, Turbocharger and Supercharger.			
Purpose and Scope	The work covers detailed thermodynamic modeling of Automobile Engines, both gasoline and diesel. Then several scenarios with different seasonal conditions and engine configurations (diesel+turbocharger, diesel+supercharger, atmospheric gasoline and so on) will be analysed. Results will be reported and a comprehensive understanding of major parameters will be revealed. Then, a turbocharger specification belonging to one of the investigated engine configurations will be realized by a detailed turbocharger design and its virtual test with CFD simulations.			
Work Packages	 Develop a comprehensive thermodynamic model that goes beyond ideal cycles to consider realistic effects Determine the cases to be investigated (diesel and gasoline; atmospheric intake, with turbocharger and with supercharger; different ambient temperatures, different ambient pressures, etc.) Design a turbocharger system completely Virtually test the design with CFD simulations Report findings 			
# of Team Members	1 student			
This section to be filled by the Commission	The Project Proposal ☐ is approved. ☐ should be revised considering the following suggestions:			

T.R. iZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT

Form No: FRM-1

First Pub Date: 15.11.2016

Revision Date: 15.02.2017

The projects are aimed to prepare students to attain the following program educational objectives:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Therefore, the final report of the project should contain the followings:

- i. Definition of the design problem and its limitations
- ii. Theoretical information about the topic, standards and patents
- iii. Different design options and selection criteria
- iv. Optimal solution with appropriate selection criteria
- v. Cost accounting, feasibility, compliance with regulations and standards, environmental impacts, and compliance with ethical rules
- vi. Engineering drawing and presentation methods for presenting