

T.R. iZMIR KÂTIP ÇELEBI UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT

First Pub Date: 15.11.2016

Revision Date: 15.02.2017

DESIGN PROJECT PROPOSAL FORM

Academic Year	2022 - 2023	Semester	Fall Spring
Project Type	Research Application		
	ME 411 Thermal & Fluid Design ME 412 Thermal & Fluid Design		
	□ ME 413 Mechanical Design	□ ME 41	4 Mechanical Design
	□ ME 415 Robotics & Control Design □ ME 416 Robotics & Control Design		
Advisor	Assoc.Prof.Dr.Sercan ACARER		
Project Title	Design and rapid prototyping (3D printer) test of high speed hydrostatic bearings for additively printed micro gas turbine applications		
Purpose and Scope	The purpose of this undergraduate project is to design, fabricate, and test high-speed hydrostatic bearings for additively printed micro gas turbine applications using rapid prototyping techniques. The goal of this project is to investigate the feasibility of using 3D printing technology to produce high-performance hydrostatic bearings that can be used in micro gas turbines.		
Work Packages	produce high-performance hydrostatic bearings that can be used in		
# of Team Members	1 student		
# of iteam wiemders	1 student		

T.R. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT

Form No: FRM-1

First Pub Date: 15.11.2016

Revision Date: 15.02.2017

This section to be filled by the Commission	 The Project Proposal is approved. should be revised considering the following suggestions:
---	--